Cucurbitane Glycosides from the Fruits of *Siraitia grosvenorii* and Their Inhibitory Effects on Epstein–Barr Virus Activation

Toshihiro Akihisa,*,[†] Yosuke Hayakawa,[†] Harukuni Tokuda,[‡] Norihiro Banno,[§] Naoto Shimizu,[⊥] Takashi Suzuki,[∥] and Yumiko Kimura[∥]

College of Science and Technology, Nihon University, 1-8 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan, Department of Biochemistry and Molecular Biology, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-0841, Japan, Ichimaru Pharcos Company Ltd., 318-1 Asagi, Motosu-shi, Gifu 501-0475, Japan, Yokogawa Analytical Systems Inc., 9-1 Takakura, Hachioji-shi, Tokyo 192-0033, Japan, and College of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba 274-8555, Japan

Received December 27, 2006

Six new cucurbitane glycosides, mogroside II B (2), 11-deoxymogroside III (4), 7-oxomogroside II E (5), 7-oxomogroside V (6), 11-oxomogroside II A₁ (7), and 11-oxomogroside IV A (8), and two known but new naturally occurring cucurbitane glycosides, mogroside II A₁ (1) and mogroside III A₂ (3), were isolated from an ethanol extract of the fruits of *Siraitia grosvenorii*. Upon evaluation of compounds 1-8 for inhibitory effects against the Epstein–Barr virus early antigen (EBV-EA) activation induced by 12-*O*-tetradecanoylphorbol-13-acetate (TPA), all compounds exhibited inhibitory effects or activation of (\pm) -(*E*)-methyl-2-[(*E*)-hydroxyimino]-5-nitro-6-methoxy-3-hexemide (NOR 1), a nitric oxide (NO) donor.

The fruits of Siraitia grosvenorii (Swingle) Lu & Zhang (Momordica grosvenorii; Cucurbitaceae) grow in Guangxi, People's Republic of China, and are used as an expectorant as well as a natural sweetener in that country. Many cucurbitane-type triterpene glycosides have been isolated and characterized from this species.¹⁻⁴ We have reported earlier the isolation and characterization of some cucurbitane glycosides from S. grosvenorii fruits and their inhibitory effects on the induction of Epstein-Barr virus early antigen (EBV-EA) by 12-O-tetradecanoylphorbol-13-acetate (TPA) in Raji cells,5 which is known to be a primary screening test for antitumor promoters (potential cancer chemopreventive agents).⁶ The cucurbitane glycosides from S. grosvenorii fruits have been studied also by Takasaki et al. from the point of view of their cancer chemopreventive effects.7 Inhibition of rat intestinal maltase and suppression of the rise in blood glucose levels in rats by oral administration of cucurbitane glycosides of S. grosvenorii have been reported recently.8

In a continuing study on the triterpene glycosides of *S. grosvenorii* fruit extract, we have isolated six new (2, 4-8) and two known but new naturally occurring cucurbitane glycosides (1, 3), and we now report their characterization as well as their inhibitory effects on the induction of EBV-EA induced by TPA and on activation of (\pm) -(*E*)-methyl-2-[(*E*)-hydroxyimino]-5-nitro-6-methoxy-3-hexemide (NOR 1), a nitric oxide (NO) donor, in Chang liver cells (normal human hepatic cells) as a primary screening test for antitumor initiators.⁹

Results and Discussion

Six new cucurbitane glycosides, mogroside II B (2), 11deoxymogroside III (4), 7-oxomogroside II E (5), 7-oxomogroside V (6), 11-oxomogroside II A₁ (7), and 11-oxomogroside IV A (8), and two known cucurbitane glycosides, mogroside II A₁ (1)³ and mogroside III A₂ (3),³ were isolated from an ethanol (EtOH) extract of the fruits of *S. grosvenorii*. Compounds 1 and 3 were previously synthesized from mogroside V by partial acid hydrolysis,³ but in the present study these compounds have been found as naturally occurring substances for the first time. The identification of

[‡] Kyoto Prefectural University of Medicine.

¹ Yokogawa Analytical Systems Inc.

compounds 1-8 was performed by spectroscopic comparison with structurally related compounds from the literature.

10.1021/np068074x CCC: \$37.00 © 2007 American Chemical Society and American Society of Pharmacognosy Published on Web 05/04/2007

^{*} To whom correspondence should be addressed. Tel: 81-3-3259-0806. Fax: 81-3-3293-7572. E-mail: akihisa@chem.cst.nihon-u.ac.jp.

[†] College of Science and Technology, Nihon University.

[§] Ichimaru Pharcos Company Ltd.

[&]quot;College of Pharmacy, Nihon University.

Table 1. ¹³C NMR Spectroscopic Data (δ values; 150 MHz, C₅D₅N) of Compounds 2 and 4–8

Lable 1.	e runt speciescopie bata (o runes, reo mile, e ₃ b ₃ r) or compounds a and 4 o												
carbon	2	4	5	6	7	8	carbon	2	4	5	6	7	8
aglycon							sugar						
moiety							moiety						
1	26.7	22.7	27.0	27.1	21.2	22.2	$G_{I}1$	107.3	107.4	107.1	106.8		106.9
2	29.5	29.1	29.0	28.9	29.7	28.6	$G_I 2$	75.5	75.5	75.4	75.5		75.4
3	87.9	87.7	87.8	87.3	75.6	86.6	G _I 3	78.7	78.6	78.7	78.5		78.6
4	42.4	41.8	43.9	43.8	41.9	42.0	$G_I 4$	71.8	71.9	71.8	71.7		71.8
5	144.2	143.2	170.6	170.8	141.4	141.3	G _I 5	78.1	78.2	78.5	78.0		77.3
6	118.4	118.8	125.2	125.2	119.0	118.5	G _I 6	63.1	63.2	63.0	70.4		70.5
7	24.6	24.6	201.2	201.2	24.2	24.1	$G_{II} 1$				105.5		105.5
8	43.5	43.9	60.0	60.1	44.1	44.0	G _{II} 2				75.3		75.3
9	40.1	34.7	40.7	40.8	49.1	49.0	G _{II} 3				78.1		78.6
10	36.8	38.6	39.3	39.2	36.1	36.0	G _{II} 4				71.8		71.8
11	77.8	32.6	76.7	76.9	213.9	213.8	G _{II} 5				78.6		78.5
12	41.1	30.8	40.7	40.8	48.8	48.8	G _{II} 6				62.8		62.8
13	47.4	46.5	47.0	47.2	49.1	49.0	G _{III} 1		106.3	105.9	103.7	106.3	106.3
14	49.8	49.4	48.6	48.7	49.7	49.7	G _{III} 2		75.1	75.4	82.5	75.1	75.1
15	34.6	35.1	34.6	34.6	34.6	34.6	G _{III} 3		78.5	78.2	78.7	78.5	78.5
16	28.4	28.1	28.3	28.6	28.0	28.0	G _{III} 4		72.1	71.8	71.5	72.1	72.1
17	51.1	51.2	50.6	50.9	50.0	50.0	G _{III} 5		76.4	78.6	77.4	76.4	76.4
18	17.0	15.7	16.9	16.9	17.0	17.0	G _{III} 6		70.5	62.7	70.2	70.4	70.4
19	26.3	28.2	26.6	26.6	20.2	20.3	G _{IV} 1		104.8		104.9	104.9	104.8
20	36.5	36.2	36.5	36.8	36.0	36.0	G _{IV} 2		75.5		75.3	75.5	75.5
21	18.9	18.9	18.8	19.0	18.5	18.5	G _{IV} 3		78.1		78.5	78.1	78.1
22	34.5	33.2	33.4	33.3	33.0	33.0	G _{IV} 4		71.5		71.8	71.5	71.5
23	29.1	29.8	29.6	29.8	29.8	29.7	G _{IV} 5		78.6		78.4	78.6	78.6
24	75.7	92.8	90.8	92.2	92.7	92.7	G _{IV} 6		62.6		63.6	62.6	62.6
25	80.6	72.7	72.0	72.6	72.7	72.7	G _{V/VI} 1	97.6			105.7		
26	22.5	24.3	25.3	24.5	24.3	24.3	G _{V/VI} 2	75.5			76.4		
27	23.0	27.0	27.0	27.1	27.0	27.0	G _{V/VI} 3	78.4			78.3		
28	27.7	28.4	27.6	27.5	27.9	28.3	G _{V/VI} 4	71.8			72.7		
29	26.3	26.0	25.6	25.5	26.3	25.8	G _{V/VI} 5	78.9			78.5		
30	19.3	18.0	19.5	19.7	18.3	18.3	G _{V/VI} 6	62.8			62.6		

The molecular formula of **2** was determined to be $C_{42}H_{72}O_{14}$ on the basis of HRESIMS (positive-ion mode) ($[M + Na]^+$, m/z823.4810). The ¹³C (Table 1) and ¹H NMR spectra (Table 2) of 2 showed the presence of seven tertiary methyls, of which two are attached to oxygen-bearing carbons [$\delta_{\rm C}$ 80.6 (s)], a secondary methyl, three oxymethines, and an olefinic methine. The ¹H NMR spectrum also showed two anomeric proton signals [$\delta_{\rm H}$ 4.89 (1H, d, J = 8.0 Hz) and 5.21 (1H, d, J = 7.7 Hz)], along with other resonances due to two glucose moieties. The ¹³C NMR spectrum of the aglycon moiety of 2 was very similar to that of mogrol [(24R)-cucurbit-5-ene-3 β ,11 α ,24,25-tetrol]¹⁰ except for the glycosylation shifts⁴ of the C-3 and C-25 signals. HMBC experiments showed cross-correlations between H-3 ($\delta_{\rm H}$ 3.67) and the C-1 ($\delta_{\rm C}$ 107.3) of the glucose (G_I) moiety attached at C-3, between H-1 $(\delta_H 4.89)$ of the glucose (G_I) and C-3 ($\delta_C 87.9$) of the aglycon, and between the H-1 ($\delta_{\rm H}$ 5.21) of the glucose (G_{VI}) moiety and C-25, which supported the proposed structure of 2 [3,25-diglucosylmogrol (mogrol 3,25-di-O- β -D-glucopyranoside)], which we named mogroside II B. Analysis of the IR, ¹³C DEPT, ¹H-¹H COSY, HMQC, HMBC, NOESY, and ESIMSⁿ spectra of 2 confirmed this structure.

Compound 4 was assigned a molecular formula of $C_{48}H_{82}O_{18}$, as determined from its $[M + Na]^+$ ion at m/z 969.5403 in the HRESIMS. In the ¹³C (Table 1) and ¹H NMR spectra (Table 2), compound 4 showed the presence of seven tertiary methyls, of which two are attached to an oxygen-bearing carbon $[\delta_C 72.7 (s)]$, a secondary methyl, two oxymethines, and an olefinic methine. The ¹H NMR spectrum of 4 further displayed three anomeric proton signals at $\delta_H 4.85$ (1H, d, J = 7.6 Hz), 4.88 (1H, d, J = 7.9 Hz), and 4.91 (1H, d, J = 7.9 Hz). The close similarity of the ¹³C NMR data to those of mogroside III [3-*O*- β -D-glucopyranosylmogrol 24-*O*- β -D-glucopyranosyl-(1 \rightarrow 6)- β -D-glucopyranoside],⁴ except for the lack of signals due to an oxymethine, suggested 4 to be a dehydoxylated analogue of mogroside III, most probably at C-11 α . HMBC experiments (Tables S1 and S2, Supporting Information) showed cross-correlations between H-3 ($\delta_{\rm H}$ 3.68) and the C-1 ($\delta_{\rm C}$ 107.4) of the glucose (G_I) moiety attached at C-3, between H-1 ($\delta_{\rm H}$ 4.88) of the glucose (G_I) and C-3 ($\delta_{\rm C}$ 87.7) of the aglycon, between H-24 ($\delta_{\rm H}$ 3.78) and the C-1 ($\delta_{\rm C}$ 106.3) of the glucose (G_{III}) moiety attached at C-24 of the aglycon, between H-1 ($\delta_{\rm H}$ 4.91) of the glucose (G_{III}) and C-24 ($\delta_{\rm C}$ 92.8) of the aglycon, and between H-1 ($\delta_{\rm H}$ 4.85) of the glucose (G_{IV}) and the C-6 ($\delta_{\rm C}$ 70.5) of the glucose (G_{III}). The above evidence, coupled with the analysis of ¹³C DEPT, ¹H–¹H COSY, HMQC, HMBC, TOCSY, NOESY, and ESIMSⁿ spectra, confirmed that **4** possesses the structure 3-*O*- β -D-glucopyranosyl 11-deoxymogrol 24-*O*- β -D-glucopyranosyl-(1→6)- β -D-glucopyranoside and has been named 11-deoxymogroside III.

Compound 5 exhibited a $[M + Na]^+$ ion at m/z 837.4588 in the HRESIMS, compatible with the molecular formula $C_{42}H_{70}O_{15}$. The ¹³C and ¹H NMR spectra of 5 exhibited the presence of seven tertiary methyls (with two attached to oxygen-bearing carbons), a secondary methyl, three oxymethines, an olefinic methine, and a carbonyl. The NMR spectra also showed the presence of two glucose moieties [anomeric protons: $\delta_{\rm H}$ 4.88 (1H, d, J = 7.9 Hz) and 4.99 (1H, d, J = 7.9 Hz)]. The carbonyl group was shown to be present as an α , β -unsaturated ketone (λ_{max} 248 nm; ν_{max} 1639 cm⁻¹), most probably as a Δ^5 -7-one group.^{11,12} The above evidence, coupled with the spectroscopic comparison with 3β -acetoxy-11 α hydroxycucurbit-5-en-7-one¹¹ and 3β -hydroxycucurbita-5,24-dien-7-one,12 suggested that 5 possesses the structure 7-oxomogrol 3,24di-O- β -D-glucopyranoside or 7-oxomogroside II E. Analysis of the ¹³C DEPT, ¹H-¹H COSY, HMQC, HMBC, NOESY, and ESIMSⁿ spectra of 5 confirmed the proposed structure.

Compound **6** gave a $[M + Na]^+$ ion in the HRESIMS at m/z1323.6194, consistent with a molecular formula of C₆₀H₁₀₀O₃₀. The ¹³C and ¹H NMR spectra for the aglycon moiety of **6** were almost superimposable on those of **5**. Compound **6** showed also the presence of five glucose moieties [anomeric protons: δ_H 4.80 (1H, d, J = 7.9 Hz), 4.86 (1H, d, J = 7.5 Hz), 4.92 (1H, d, J = 7.9 Hz),

Table 2. ¹H NMR Spectroscopic Data (δ values; 600 MHz, C₅D₅N) of Compounds 2 and 4–8^{*a*}

proton(s)	2	4	5	6	7	8
aglycon						
moiety	2.00.2.02	1 40 1 02	2.10.2.02	0.11.0.10	1 (1 2 07	1 (2 1 0 1
1	2.00, 2.92	1.49, 1.83	2.10, 3.02	2.11, 3.10	1.64, 2.07	1.63, 1.94
2	2.03, 2.42	1.92, 2.47	2.09, 2.43	2.10, 2.49	1.86, 1.95	1.92, 2.47
3	3.67 (br s)	3.68 (br s)	3.79 (br s)	3.81 (br s)	3.72 (br s)	3.69 (br s)
6	5.50 (br d, 5.7)	5.48 (br d, 5.8)	6.29 (s)	6.28 (s)	5.69 (d, 5.5)	5.51 (d, 5.8)
7	1.69, 2.34	1.70, 2.24			1.86, 2.33	1.76, 2.17
8	1.66 (br d, 7.7)	1.65	2.54 (s)	2.53 (s)	1.87	1.79
10	2.79 (br d, 11.2)	2.26	3.21	3.24	2.54	2.41
11	4.15	1.36, 1.59	4.13 (dd, 6.2, 10.6)	4.14		
12	2.09, 2.12	1.42, 1.56	2.10 (2H)	2.20, 2.24	2.53, 2.96	2.49, 2.91
15	1.07, 1.17	1.10, 1.17	1.17, 1.69	1.16, 1.70	1.17, 1.29	1.15, 1.26
16	1.55, 1.99	1.44, 2.02	1.46, 2.02	1.46, 2.09	1.46, 2.11	1.45, 2.09
17	1.67	1.55	1.65	1.79	1.74	1.73
18	0.91 (s)	0.85 (s)	0.92 (s)	0.93 (s)	0.77 (s)	0.74(s)
19	1.32(s)	0.87 (s)	1.27 (s)	1.29(s)	1.27(s)	1.18 (s)
20	1.53	1.52	1.50	1.50	1.43	1.43
21	1.01 (d. 6.3)	0.94(d.6.2)	0.96(d, 6.5)	1.09(d. 6.5)	0.87 (d. 6.5)	0.86 (d. 6.5)
22	1.66 1.72	1 75 1 90	1 82 1 89	1 79 1 90	1 74 1 87	1 74 1 88
22	1.56, 1.72	1.72, 1.77	1 69 1 81	1.58 1.90	1.55 1.72	1 53 1 73
23	1.50, 1.72 1.03 (br d 8.3)	3.78 (br d 10.0)	3.86 (br d 8.6)	3.76 (br d 0.2)	3.77 (br d 0.6)	3.76 (br d 10.0)
24	1.53 (c)	1.45 (c)	1.46 (c)	1.46 (s)	1.46(c)	1.45 (c)
20	1.53 (8)	1.43(8) 1.24(6)	1.40(s)	1.40(8) 1.24(a)	1.40(8) 1.24(a)	1.45 (8)
27	1.55 (8)	1.34(8) 1.11(a)	1.40(s) 1.22(s)	1.34(8) 1.14(a)	1.34(8) 1.16(a)	1.09 (a)
20	1.13(8) 1.55(a)	1.11(8) 1.52(a)	1.25 (8)	1.14(8) 1.52(a)	1.10(8) 1.42(a)	1.08(8) 1.51(a)
29	1.33 (8)	1.35 (8)	1.37 (8)	1.52 (8)	1.45 (8)	1.31(8)
30	0.92(s)	0.75(s)	0.88 (s)	0.98 (s)	0.99 (s)	0.92(s)
sugar						
moiety	100 (1 0 0)					
GIL	4.89 (d, 8.0)	4.88 (d, 7.9)	4.88 (d, 7.9)	4.80 (d, 7.9)		4.81 (d, 7.5)
G _I 2	3.94	3.96	3.97	3.91		3.91
G _I 3	4.18	4.20	4.20	4.13		4.13
G _I 4	4.17	4.18	4.19	4.00		4.01
G _I 5	3.93	3.95	3.93	4.07		4.07
G _I 6	4.33, 4.49	4.38, 4.56	4.36, 4.52	4.30, 4.80		4.31, 4.81
G _{II} 1				5.15 (d, 7.6)		5.14 (d, 7.9)
G _{II} 2				4.04		4.04
G _{II} 3				4.24		4.24
G _{II} 4				4.24		4.24
G _{II} 5				3.95		3.96
G _{II} 6				4.37, 4.52		4.37, 4.53
G _{III} 1		4.91 (d, 7.9)	4.99 (d, 7.9)	4.92 (d, 7.9)	4.90 (d, 8.2)	4.89 (d, 7.5)
G _{III} 2		4.04	4.03	4.16	4.04	4.04
G _{III} 3		4.17	4.20	4.22	4.17	4.15
G _{III} 4		3.97	4.19	3.91	3.97	3.96
G _{III} 5		4.16	4.00	4.07	4.16	4.16
G _{III} 6		3.95, 4.96	4.32, 4.54	3.96, 4.90	3.96, 4.97	3.96, 4.97
G _{IV} 1		4.85 (d, 7.6)		4.86 (d, 7.5)	4.85 (d, 7.9)	4.85 (d, 7.5)
G _{IV} 2		4.06		4.05	4.06	4.06
G _{IV} 3		4.25		4.23	4.24	4.25
G _{IV} 4		4.24		4.23	4.26	4.25
G _{IV} 5		3.91		3.9	3.90	3.91
G _{IV} 6		4.36, 4.49		4.35, 4.48	4.38, 4.50	4.37, 4.50
G _{V/VI} 1	5.21 (d, 7.7)	· ·		5.44 (d. 7.9)		,
G _{V/VI} 2	4.02			4.07		
G _{V/VI} 3	4.23			4.18		
Gyvi 4	4.20			4.11		
GVAT 5	3.93			3.93		
Gyvi 6	4 36 4 50			4 31 4 49		
J V / V1 J						

^a Figures in parentheses denote J values (Hz).

5.15 (1H, d, J = 7.6 Hz), and 5.44 (1H, d, J = 7.9 Hz)]. HMBC experiments (Tables S1 and S2, Supporting Information) showed cross-correlations between H-3 ($\delta_{\rm H}$ 3.81) and the C-1 ($\delta_{\rm C}$ 106.8) of the glucose (G_I) moiety attached at C-3, between H-1 ($\delta_{\rm H}$ 4.80) of the glucose (G_I) and C-3 ($\delta_{\rm C}$ 87.3) of the aglycon, between H-1 ($\delta_{\rm H}$ 5.15) of the glucose (G_{II}) and C-6 ($\delta_{\rm C}$ 70.4) of the glucose (G_{II}), between H-24 ($\delta_{\rm H}$ 3.76) and C-1 ($\delta_{\rm C}$ 103.9) of the glucose (G_{III}) moiety attached at C-24 of the aglycon, between H-1 ($\delta_{\rm H}$ 4.92) of the glucose (G_{III}) and C-24 ($\delta_{\rm C}$ 92.2) of the aglycon, between H-1 ($\delta_{\rm H}$ 4.86) of the glucose (G_{II}) and C-6 ($\delta_{\rm C}$ 70.2) of the glucose (G_{III}), and between H-1 ($\delta_{\rm H}$ 5.44) of the glucose (G_V) and C-2 ($\delta_{\rm C}$ 82.5) of the glucose (G_{III}). This evidence, in

combination with the spectroscopic comparison with compound **5** and mogroside V {3-*O*- β -D-glucopyranosyl-(1 \rightarrow 6)- β -D-glucopyranosyl-(1 \rightarrow 6)]- β -D-glucopyranosyl-(1 \rightarrow 6)]- β -D-glucopyranoside},^{2,10} suggested that **6** possesses 7-oxomogrol as an aglycon moiety, and the linkage of the sugar moiety is the same as that of mogroside V. Hence, **6** was formulated as 3-*O*- β -D-glucopyranosyl-(1 \rightarrow 6)- β -D-glucopyranosyl-(1 \rightarrow 6)]- β -D-glucopyranosyl-(1

Table 3. Inhibitory Effets on the Induction of Epstein–Barr Virus Early Antigen and Inhibitory Ratio (I.R.) on NOR 1 Action of Compounds 1-8 and Reference Compounds

			percentag	e of EBV-EA i					
			concentratio	n (mol ratio/32					
compound		1000 50		500	100	10	IC ₅₀ ^b (mol ratio/ 32 pmol TPA)	I.R. of NOR 1 activation ^c	
1	mogroside IIA ₁	9.5	(70)	26.9	81.3	100	358	1.6	
2	mogroside IIB	7.2	(70)	26.0	76.0	100	359	1.5	
3	mogroside IIIA ₂	5.1	(70)	24.0	75.3	100	352	1.5	
4	11-deoxymogroside III	10.6	(70)	25.7	81.9	100	357	1.5	
5	7-oxomogroside IIE	7.7	(70)	24.4	80.8	100	343	1.5	
6	7-oxomogroside V	13.7 (70)		31.0	84.7	100	400	1.4	
7	11-oxomogroside IIA ₁	8.5	(70)	25.0	80.6	100	346	1.4	
8	11-oxomogroside IVa	10.3	(70)	27.3	82.5	100	367	1.4	
	reference compounds								
	β -carotene	8.6	(70)	34.2	82.1	100	397		
	glycyrrhizin							2.2	
	carboxy-PTIO							8.0	

^{*a*} Values represent percentage relative to the positive control value. TPA (32 pmol, 20 ng) = 100%. Values in parentheses are viability percentages of Raji cells. ${}^{b}IC_{50}$ represents the molar ratio to TPA that inhibits 50% of positive control (100%) activated with 32 pmol TPA. ^{*c*}Determined at the concentration of 350 nmol. Inhibitory ratio of NOR 1 (positive control; 350 nm) was taken as 1.0.

Compound 7 was assigned the molecular formula $C_{42}H_{70}O_{14}$ (HRESIMS m/z 821.4656 [M + Na]⁺). The ¹³C and ¹H NMR spectra of 7 showed the presence of seven tertiary methyls (with two attached to an oxygen-bearing carbon), a secondary methyl, two oxymethines, an olefinic methine, and a carbonyl. The spectra also showed the presence of two glucose moieties [anomeric protons: $\delta_{\rm H}$ 4.85 (1H, d, J = 7.9 Hz) and 4.90 (1H, d, J = 8.2Hz)]. With the above evidence, coupled with the spectroscopic comparison with those of compound 1^3 and 11-oxomogrol,¹⁰ compound 7 was suggested as possessing 11-oxomogrol as the aglycon moiety and a β -D-glucopyranosyl-(1 \rightarrow 6)- β -D-glucopyranoside group linked to C-24 of the aglycon as a sugar moiety. Compound 7 was, therefore, assigned as 11-oxomogrol 24-O- β -Dglucopyranosyl- $(1\rightarrow 6)$ - β -D-glucopyranoside (11-oxomogroside II A₁). Analysis of the ¹³C DEPT, ¹H-¹H COSY, HMQC, HMBC, NOESY, and ESIMSⁿ spectra of 7 confirmed the structure proposed.

Compound 8 exhibited a $[M + Na]^+$ ion at m/z 1145.5698 in the HRESIMS, corresponding to a molecular formula of $C_{54}H_{90}O_{24}$. The ¹³C and ¹H NMR spectra for the aglycon moiety of 8 were superimposable on those of 7, whereas these showed the presence of four glucose moieties [anomeric protons: $\delta_{\rm H}$ 4.81 (1H, d, J =7.5 Hz), 4.85 (1H, d, J = 7.5 Hz), 4.89 (1H, d, J = 7.5 Hz), and 5.14 (1H, d, J = 7.9 Hz)]. HMBC experiments showed crosscorrelations between H-3 ($\delta_{\rm H}$ 3.69) and C-1 ($\delta_{\rm C}$ 106.9) of the glucose (G_I) moiety attached at C-3, between H-1 ($\delta_{\rm H}$ 4.81) of the glucose (G_I) and C-3 ($\delta_{\rm C}$ 86.6) of the aglycon, between H-1 ($\delta_{\rm H}$ 5.14) of the glucose (G_{II}) and C-6 ($\delta_{\rm C}$ 70.5) of the glucose (G_I), between H-24 ($\delta_{\rm H}$ 3.76) and C-1 ($\delta_{\rm C}$ 106.3) of the glucose (G_{III}) moiety attached at C-24 of the aglycon, between H-1 ($\delta_{\rm H}$ 4.89) of the glucose (G_{III}) and C-24 ($\delta_{\rm C}$ 92.7) of the aglycon, and between H-1 ($\delta_{\rm H}$ 4.85) of the glucose (G_{IV}) and C-6 ($\delta_{\rm C}$ 70.4) of the glucose (G_{III}). On comparison of the spectroscopic data with those of mogroside IV A,³ compound 8 could be suggested to possess a β -D-glucopyranosyl-(1 \rightarrow 6)- β -D-glucopyranoside moiety at both C-3 and C-24 of 11-oxomogrol, its aglycon. Hence, the structure of 8 was formulated as 11-oxomogrol 3,24-di-O- β -both-glucopyranosyl- $(1\rightarrow 6)$ - β -both-glucopyranoside (11-oxomogroside IV A), and this assignment was supported from the analysis of the ¹³C DEPT, 1H-1H COSY, HMQC, HMBC, TOCSY, NOESY, and ESIMS^{*n*} spectra.

The inhibitory effect on EBV-EA activation induced by TPA was examined as a preliminary evaluation of the potential antitumor-promoting effects⁶ of the eight compounds, **1–8**. The results are shown in Table 3, together with comparable data for β -carotene (a vitamin A precursor studied widely in cancer chemoprevention animal models¹³). All of the compounds tested showed inhibitory effects with IC₅₀ values of 343–400 mol ratio/32 pmol TPA, which were almost comparable with that of β -carotene (397 mol ratio/32 pmol TPA). In addition, using an in vitro screening model for NO scavenging, the inhibitory effects of compounds **1–8** were evaluated for their scavenging activity against NO generation by NOR 1 in a cultured cell system. Table 3 shows the inhibitory ratios (I.R.) of the eight compounds and two reference compounds, the natural product glycyrrhizin and the synthetic NO scavenger carboxy-PTIO, on NOR 1 action. All of the cucurbitane glycosides tested showed only a weak inhibitory effects (I.R. 1.4–1.6).

Although not evaluated quantitatively, compounds 1-8 all exhibited a sweet taste in water, which suggests that these compounds participate in the overall sweetness of the fruits of *S. grosvenorii*.

Experimental Section

General Experimental Procedures. Crystallizations were performed in ethyl acetate (EtOAc), and melting points were determined on a Yanagimoto micro melting point apparatus and are uncorrected. Optical rotations were measured on a JASCO P-1020 polarimeter in MeOH at 25 °C. IR spectra were recorded in KBr disks. NMR spectra were recorded with a JEOL ECA-600 (1H, 600 MHz; 13C, 150 MHz) or with a JEOL LA-500 (¹H, 500 MHz; ¹³C, 125 MHz) spectrometer in C_5D_5N with tetramethylsilane as an internal standard. ESIMS and HRESIMS were recorded on an Agilent 1100 LC/MSD TOF (time-of-flight) system [ionization mode: positive; nebulizing gas (N₂) pressure: 35 psi; dryinggas (N2): flow, 12 L/min, temp, 325 °C; capillary voltage: 3000 V; fragmentor voltage: 225 V] and on an Agilent 1100 LC/MSD Trap XCT plus system [ionization mode: positive; nebulizing gas (N₂) pressure: 50 psi; drying-gas (N₂): flow, 10 L/min, temp, 350 °C; capillary voltage: 3000 V; fragmentor voltage: 225 V]. Diaion HP-20 (Mitsubishi Chemical Co., Tokyo, Japan) and C₁₈ silica (Chromatorex-ODS, 100-200 mesh; Fuji Silysia Chemical, Ltd., Aichi, Japan) were used for open column chromatography. Reversed-phase preparative HPLC (with refractive index detector) was carried out on C18 silica columns (25 cm \times 10 cm i.d.) at 25 °C at a flow rate of 2.0 mL/min of the eluent, on a TSK ODS-120A 5 µm column (Toso Co., Tokyo, Japan) [eluent: MeOH-H2O-acetic acid (AcOH) (50:50:1) (HPLC system I)] and on a Pegasil ODS II 5 µm column (Senshu Scientific Co., Ltd., Tokyo, Japan) [eluent: MeOH-H₂O-AcOH (70:30:1) (system II), MeOH-H2O-AcOH (60:40:1) (HPLC system III), MeOH-H₂O-AcOH (40:60:1) (HPLC system IV), or MeCN-H₂O (7:13) (HPLC system V)].

Chemicals and Materials. Oven-dried fruits of *Siraitia grosvenorii* Swingle (Cucurbitaceae), cultivated in the southwestern Chinese province of Guangxi, People's Republic of China, were obtained in September 2004. The plant material was authenticated by one (N.B.) of the authors, and a voucher specimen (No. KO0008-1H-27-4) has been deposited in the Research Laboratory, Ichimaru Pharcos Co. Ltd. The following chemicals were purchased: TPA from ChemSyn Laboratories (Lenexa, KS), glycyrrhizin and β -carotene from Sigma Chemical Co. (St. Louis, MO), the EBV cell culture reagents and *n*-butanoic acid from Nacalai Tesque, Inc. (Kyoto, Japan), and NOR 1 and carboxy-PTIO [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt] from Dojindo Laboratories (Kumamoto, Japan). Mogrol, 11-oxomogrol, mogroside II E, mogroside III, mogroside IV A, and mogroside V used for the NMR spectroscopic comparison were isolated from the fruits of *S. grosvenorii.*⁵

Extraction and Isolation. Air-dried and powdered *S. grosvenorii* fruits (2 kg) were extracted with 99% ethanol (EtOH) by soaking for one week at room temperature three times to give an extract (75.5 g). The extract was partitioned between EtOAc and H_2O (1:1, v/v) mixture. The H_2O phase was then extracted with *n*-butanol (*n*-BuOH), which gave *n*-BuOH and H_2O phases. Removal of the solvent under reduced pressure from the EtOAc, *n*-BuOH, and H_2O phases yielded EtOAc (16.0 g), *n*-BuOH (12.0 g), and H_2O (40.5 g) fractions, respectively.

n-Butanol-Soluble Fraction. A portion (11.2 g) of the n-BuOH fraction was subjected to chromatography on a Diaion HP-20 (600 g) column. Step gradient elution was conducted with H2O-MeOH (4:1 → 0:1) to give fractions BA (2.3 g), BB (1.6 g), BC (4.5 g), BD (0.7 g), and BE (0.3 g), listed in decreasing order of polarity. Fraction BC was then separated by ODS (220 g) column chromatography [eluent: H₂O-MeOH (1:1 \rightarrow 0:1)] to give fractions BC1 (1.03 g), BC2 (2.77 g), and BC3 (0.47 g). On further ODS (50 g) column chromatography [eluent: $H_2O-MeOH(7:3\rightarrow 0:1)$], fraction BC1 afforded fractions BC1a (196 mg), BC1b (489 mg), BC1c (252 mg), and BC1d (82 mg). Preparative HPLC (HPLC system I) of fraction BC1c gave 5 [6.9 mg; retention time (t_R) 20.6 min]. Fraction BC2 was further separated by HPLC system III to give 8 (5.6 mg; t_R 17.6 min) and a mixture (23.0 mg; t_R 41.6 min) of 2 and 3. Preparative HPLC (HPLC system V) of the mixture afforded 2 (2.2 mg; t_R 12.4 min) and 3 (4.7 mg; t_R 10.8 min). In turn, preparative HPLC (HPLC system II) of fraction BC3 yielded 1 (25.1 mg; t_R 25.6 min), 4 (40.3 mg; t_R 43.4 min), and 7 (5.6 mg; $t_{\rm R}$ 28.8 min).

Water-Soluble Fraction. A portion (25.8 g) of the H₂O fraction was subjected to Diaion HP-20 (1.2 kg) column chromatography using H₂O-MeOH (1:0 \rightarrow 0:1) to give fractions WA (18.2 g), WB (2.5 g), WC (1.1 g), and WD (1.0 g), listed in increasing order of polarity. Fraction WC was further separated by ODS (100 g) column chromatography [eluent: H₂O-MeOH (4:1 \rightarrow 0:1)] to give fractions WC1 (731 mg), WC2 (220 mg), WC3 (190 mg), and WC4 (157 mg). Fraction WC3 was subjected to HPLC system IV and yielded **6** (7.3 mg; *t*_R 37.0 min).

Mogroside II A₁ {mogrol [(24*R*)-cucubit-5-ene- 3β ,11 α ,24,25tetrol] 24-0- β -D-glucopyranosyl-(1 \rightarrow 6)- β -D-glucopyranoside} (1). The ¹H and ¹³C NMR data of 1 are shown in Tables S3 and S4, respectively, since the assigned NMR data of this compound are unavailable in the literature; ESIMS m/z 823 [M + Na]⁺.

Mogroside II B (mogrol 3,25-di-*O*-β-D-glucopyranoside) (2): fine needles, mp 183–186 °C (EtOAc); $[\alpha]^{25}_{D}$ +16.2 (*c* 0.46, MeOH); IR (KBr) ν_{max} 3400 (OH), 2931, 1647, 1459, 1379, 1078, 1030 cm⁻¹; ¹H and ¹³C NMR, see Tables 1 and 2, respectively; HRESIMS *m/z* 823.4810 (calcd for C₄₂H₇₂O₁₄Na [M + Na]⁺, 823.4819); ESIMS *m/z* 823 [M + Na]⁺, MS² *m/z* 661 [823 – C₆H₁₀O₅]⁺, MS² *m/z* 643 [823 – C₆H₁₂O₆]⁺, MS³ *m/z* 463 [643 – C₆H₁₂O₆]⁺.

Mogroside III A₂ [**3**-O- β -D-glucopyranosyl-(**1** \rightarrow **6**)- β -D-glucopyranosyl mogrol **24**-O- β -D-glucopyranoside] (**3**). The ¹H and ¹³C NMR data of **3** are shown in Tables S3 and S4, respectively, since the assigned NMR data of this compound are unavailable in the literature; ESIMS m/z 985 [M + Na]⁺.

11-Deoxymogroside III [3-*O*-*β*-**D**-glucopyranosyl **11-deoxymogrol 24-***O*-*β*-**D**-glucopyranosyl-(**1**→**6**)-*β*-**D**-glucopyranoside] (4): fine plates, mp 189–192 °C (EtOAc); $[\alpha]^{25}_{D}$ +5.0 (*c* 0.54, MeOH); IR (KBr) ν_{max} 3398 (OH), 2935, 1647, 1460, 1377, 1171, 1076, 1034 cm⁻¹; ¹H and ¹³C NMR, see Tables 1 and 2, respectively; HRESIMS *m*/*z* 969.5403 (calcd for C₄₈H₈₂O₁₈Na [M + Na]⁺, 969.5398); ESIMS *m*/*z* 969 [M + Na]⁺, MS² *m*/*z* 807 [969 – C₆H₁₀O₅]⁺, MS² *m*/*z* 789 [969 – C₆H₁₂O₆]⁺, MS³ *m*/*z* 645 [807 – C₆H₁₀O₅]⁺, MS³ *m*/*z* 627 [807 – C₆H₁₂O₆]⁺. **7-Oxomogroside II E (7-oxomogrol 3,24-di-***O*-β-D-glucopyranoside) (5): fine needles, mp 196–199 °C (EtOAc); $[\alpha]^{25}_{D}$ +22.9 (*c* 0.94, MeOH); UV λ_{max} (log ϵ) 248 (4.03) nm; IR (KBr) ν_{max} 3392 (OH), 2929, 1639 (>C=O), 1460, 1381, 1171, 1076, 1034 cm⁻¹; ¹H and ¹³C NMR, see Tables 1 and 2, respectively; HRESIMS *m*/*z* 837.4588 (calcd for C₄₂H₇₀O₁₅Na [M + Na]⁺, 837.4612); ESIMS *m*/*z* 815 [M + H]⁺, MS² *m*/*z* 653 [815 – C₆H₁₀O₅]⁺, MS² *m*/*z* 635 [815 – C₆H₁₂O₆]⁺, MS² *m*/*z* 491 [815 – 2C₆H₁₀O₅]⁺, MS² *m*/*z* 455 [815 – 2C₆H₁₂O₆]⁺.

7-Oxomogroside V {**3**-*O*-β-**D**-glucopyranosyl-(1→6)-β-**D**-glucopyranosyl-(1→6)-β-**D**-glucopyranosyl-(1→2)-[β-**D**-glucopyranoside-(1→6)]-β-**D**-glucopyranoside} (**6**): fine needles, mp 196–200 °C (EtOAc); [α]²⁵_D +3.8 (*c* 0.60, MeOH); UV λ_{max} (log ϵ) 248 (4.04) nm; IR (KBr) ν_{max} 3398 (OH), 2927, 1641 (>C=O), 1460, 1381, 1169, 1074 cm⁻¹; ¹H and ¹³C NMR, see Tables 1 and 2, respectively; HRESIMS *m*/*z* 1323.6194 (calcd for C₆₀H₁₀₀O₃₀Na [M + Na]⁺, 1323.6197); ESIMS *m*/*z* 1323 [M + Na]⁺, MS² *m*/*z* 1161 [1323 − C₆H₁₀O₅]⁺, MS³ *m*/*z* 999 [1161 − C₆H₁₀O₅]⁺, MS⁴ *m*/*z* 837 [999 − C₆H₁₀O₅]⁺, MS⁴ *m*/*z* 675 [837 − C₆H₁₀O₅]⁺, MS⁴ *m*/*z* 513 [675 − C₆H₁₀O₅]⁺.

11-Oxomogroside II A₁ **[11-oxomogrol 24-***O*-β-**D**-glucopyranosyl-(**1**→**6**)-β-**D**-glucopyranoside] (7): fine plates, mp 144–147 °C (EtOAc); [α]²⁵_D +48.3 (*c* 0.69, MeOH); IR (KBr) ν_{max} 3398 (OH), 2929, 1687 (>C=O), 1647, 1461, 1379, 1171, 1074, 1038 cm⁻¹; ¹H and ¹³C NMR, see Tables 1 and 2, respectively; HRESIMS *m*/*z* 821.4656 (calcd for C₄₂H₇₀O₁₄Na [M + Na]⁺, 821.4663); ESIMS *m*/*z* 821 [M + Na]⁺, MS² *m*/*z* 669 [821 – 152]⁺, MS² *m*/*z* 659 [821 – C₆H₁₀O₅]⁺, MS³ *m*/*z* 507 [669 – C₆H₁₀O₅]⁺.

11-Oxomogroside IV A [11-oxomogrol 3,24-di-*O*-*β*-**D**-glucopyranosyl-(1→6)-*β*-**D**-glucopyranoside] (8): fine plates, mp 184–188 °C (EtOAc); [α]²⁵_D +17.3 (*c* 0.44, MeOH); IR (KBr) ν_{max} 3398 (OH), 2925, 1684 (>C=O), 1457, 1379, 1171, 1074, 1031 cm⁻¹; ¹H and ¹³C NMR, see Tables 1 and 2, respectively; HRESIMS *m*/*z* 1145.5719 (calcd for C₅₄H₉₀O₂₄Na [M + Na]⁺, 1145.5719); ESIMS *m*/*z* 1145 [M + Na]⁺, MS² *m*/*z* 669 [1145 – 152 – 2C₆H₁₀O₅]⁺, MS³ *m*/*z* 507 [669 – C₆H₁₀O₅]⁺.

In Vitro EBV-EA Activation Experiment. For the protocol for this in vitro assay, refer to previous articles.^{14,15}

In Vitro NOR 1 Inhibition Experiment. For the protocol for this in vitro assay, refer to previous articles.^{9,15}

Acknowledgment. The authors thank Prof. K.-H. Lee (University of North Carolina) for his comments and advice. This work was supported, in part, by a grant "Academic Frontier" Project for Private Universities: Matching Fund Subsidy from MEXT (Ministry of Education, Culture, Sports, Science and Technology of Japan) 2002–2006.

Supporting Information Available: ¹³C and ¹H NMR and HMBC NMR data for **4**–**6** and ¹³C and ¹H NMR data for **1** and **3**. This information is available free of charge via the Internet at http:// pubs.acs.org.

References and Notes

- Takemoto, T.; Arihara, S.; Nakajima, T.; Okuhira, M. Yakugaku Zasshi 1983, 103, 1151–1154.
- (2) Takemoto, T.; Arihara, S.; Nakajima, T.; Okuhira, M. Yakugaku Zasshi 1983, 103, 1155–1166.
- (3) Takemoto, T.; Arihara, S.; Nakajima, T.; Okuhira, M. Yakugaku Zasshi 1983, 103, 1167–1173.
- (4) Matsumoto, K.; Kasai, R.; Ohtani, K.; Tanaka, O. Chem. Pharm. Bull. 1990, 38, 2030–2032.
- (5) Ukiya, M.; Akihisa, T.; Tokuda, H.; Toriumi, M.; Mukainaka, T.; Banno, N.; Kimura, Y.; Hasegawa, J.; Nishino, H. J. Agric. Food Chem. 2002, 50, 6710–6715.
- (6) Akihisa, T.; Yasukawa, K.; Tokuda, H. In *Studies in Natural Products Chemistry, Vol. 29, Bioactive Natural Products (Part J)*; Atta-ur-Rahman, Ed.; Elsevier Science B.V.: Amsterdam, 2003; pp 73–126.
- (7) Takasaki, M.; Konoshima, T.; Murata, Y.; Sugiura, M.; Nishino, H.; Tokuda, H.; Matsumoto, K.; Kasai, R.; Yamasaki, K. *Cancer Lett.* 2003, 198, 47–42.
- (8) Suzuki, Y. A.; Murata, Y.; Inui, H.; Sugiura, M.; Nakano, Y. J. Agric. Food Chem. 2005, 53, 2941–2946.

- (9) Tokuda, H.; Okuda, Y.; Mukainaka, T.; Okuda, M.; Ichiishi, E.; Nishino, H.; Takasaki, M.; Konoshima, T. In Portland Press Proceedings 16, Biology of Nitrogen Oxide, Part 7; Portland Press: London, 2000; p 201.
- (10) Kasai, R.; Nie, R.-L.; Nashi, K.; Ohtani, K.; Zhou, J.; Tao, G.-D.; Tanaka, O. Agric. Biol. Chem. 1989, 53, 3347–3349.
- (11) Paryzek, Z.; Wydra, R. *Can. J. Chem.* **1985**, *63*, 1280–1286.
 (12) Akihisa, T.; Yasukawa, K.; Kimura, Y.; Takido, M.; Kokke, W. C. M. C.; Tamura, T. Phytochemistry 1994, 36, 153-157.
- (13) Murakami, A.; Ohigashi, H.; Koshimizu, K. Biosci. Biotechnol. Biochem. 1996, 60, 1-8.
- (14) Takaishi, Y.; Ujita, K.; Tokuda, H.; Nishino, H.; Iwashima, A.; Fujita, T. Cancer Lett. 1992, 65, 19-26.
- (15) Akihisa, T.; Tokuda, H.; Hasegawa, D.; Ukiya, M.; Kimura, Y.; Enjo, F.; Suzuki, T.; Nishino, H. J. Nat. Prod. 2006, 69, 38-42.

NP068074X